Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Neuroimage Clin ; 42: 103585, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38531165

ABSTRACT

Resting state functional magnetic resonance imaging (rsfMRI) provides researchers and clinicians with a powerful tool to examine functional connectivity across large-scale brain networks, with ever-increasing applications to the study of neurological disorders, such as traumatic brain injury (TBI). While rsfMRI holds unparalleled promise in systems neurosciences, its acquisition and analytical methodology across research groups is variable, resulting in a literature that is challenging to integrate and interpret. The focus of this narrative review is to address the primary methodological issues including investigator decision points in the application of rsfMRI to study the consequences of TBI. As part of the ENIGMA Brain Injury working group, we have collaborated to identify a minimum set of recommendations that are designed to produce results that are reliable, harmonizable, and reproducible for the TBI imaging research community. Part one of this review provides the results of a literature search of current rsfMRI studies of TBI, highlighting key design considerations and data processing pipelines. Part two outlines seven data acquisition, processing, and analysis recommendations with the goal of maximizing study reliability and between-site comparability, while preserving investigator autonomy. Part three summarizes new directions and opportunities for future rsfMRI studies in TBI patients. The goal is to galvanize the TBI community to gain consensus for a set of rigorous and reproducible methods, and to increase analytical transparency and data sharing to address the reproducibility crisis in the field.

2.
Mil Med ; 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38401164

ABSTRACT

INTRODUCTION: MRI represents one of the clinical tools at the forefront of research efforts aimed at identifying diagnostic and prognostic biomarkers following traumatic brain injury (TBI). Both volumetric and diffusion MRI findings in mild TBI (mTBI) are mixed, making the findings difficult to interpret. As such, additional research is needed to continue to elucidate the relationship between the clinical features of mTBI and quantitative MRI measurements. MATERIAL AND METHODS: Volumetric and diffusion imaging data in a sample of 976 veterans and service members from the Chronic Effects of Neurotrauma Consortium and now the Long-Term Impact of Military-Relevant Brain Injury Consortium observational study of the late effects of mTBI in combat with and without a history of mTBI were examined. A series of regression models with link functions appropriate for the model outcome were used to evaluate the relationships among imaging measures and clinical features of mTBI. Each model included acquisition site, participant sex, and age as covariates. Separate regression models were fit for each region of interest where said region was a predictor. RESULTS: After controlling for multiple comparisons, no significant main effect was noted for comparisons between veterans and service members with and without a history of mTBI. However, blast-related mTBI were associated with volumetric reductions of several subregions of the corpus callosum compared to non-blast-related mTBI. Several volumetric (i.e., hippocampal subfields, etc.) and diffusion (i.e., corona radiata, superior longitudinal fasciculus, etc.) MRI findings were noted to be associated with an increased number of repetitive mTBIs versus. CONCLUSIONS: In deployment-related mTBI, significant findings in this cohort were only observed when considering mTBI sub-groups (blast mechanism and total number/dose). Simply comparing healthy controls and those with a positive mTBI history is likely an oversimplification that may lead to non-significant findings, even in consortium analyses.

3.
J Neurotrauma ; 41(1-2): 32-40, 2024 01.
Article in English | MEDLINE | ID: mdl-37694678

ABSTRACT

Mild traumatic brain injury (mTBI) is the most common form of brain injury. While most individuals recover from mTBI, roughly 20% experience persistent symptoms, potentially including reduced fine motor control. We investigate relationships between regional white matter organization and subcortical volumes associated with performance on the Grooved Pegboard (GPB) test in a large cohort of military Service Members and Veterans (SM&Vs) with and without a history of mTBI(s). Participants were enrolled in the Long-term Impact of Military-relevant Brain Injury Consortium-Chronic Effects of Neurotrauma Consortium. SM&Vs with a history of mTBI(s) (n = 847) and without mTBI (n = 190) underwent magnetic resonance imaging and the GPB test. We first examined between-group differences in GPB completion time. We then investigated associations between GPB performance and regional structural imaging measures (tractwise diffusivity, subcortical volumes, and cortical thickness) in SM&Vs with a history of mTBI(s). Lastly, we explored whether mTBI history moderated associations between imaging measures and GPB performance. SM&Vs with mTBI(s) performed worse than those without mTBI(s) on the non-dominant hand GPB test at a trend level (p < 0.1). Higher fractional anisotropy (FA) of tracts including the posterior corona radiata, superior longitudinal fasciculus, and uncinate fasciculus were associated with better GPB performance in the dominant hand in SM&Vs with mTBI(s). These findings support that the organization of several white matter bundles are associated with fine motor performance in SM&Vs. We did not observe that mTBI history moderated associations between regional FA and GPB test completion time, suggesting that chronic mTBI may not significantly influence fine motor control.


Subject(s)
Brain Concussion , Brain Injuries , Military Personnel , Veterans , White Matter , Humans , Brain Concussion/diagnostic imaging , Brain Concussion/complications , White Matter/diagnostic imaging , Brain Injuries/complications , Brain
4.
Cogn Behav Ther ; 53(1): 70-86, 2024 01.
Article in English | MEDLINE | ID: mdl-37969001

ABSTRACT

Exposure and cognitive-based therapies are both effective for PTSD, but knowledge of which intervention is best for which patient is lacking. This lack of knowledge is particularly noticeable for group treatments, as no study has examined whether responses to different group therapies are associated with different pretreatment characteristics. Here, we explored whether pretreatment levels of three types of psychological characteristics-PTSD symptom clusters, posttraumatic cognitions, and emotion regulation difficulties-were associated with symptom reduction during group-delivered cognitive versus exposure-based PTSD treatment. Participants were Veterans with PTSD drawn from two previous clinical trials: one of group CPT (GCPT; n = 32) and the other of group-based exposure therapy (GBET; n = 21). Growth curve modeling was used to identify pretreatment variables that predicted weekly PTSD symptom changes during each therapy. Higher posttraumatic cognitions at pretreatment predicted steeper PTSD symptom reduction during GCPT but not GBET. Additionally, symptom reduction during each therapy was associated with different pretreatment emotion regulation difficulties: difficulties with goal-directed behavior for GBET and lack of emotional clarity and limited access to emotion regulation strategies for GCPT. These findings suggest that assigning Veterans to a group PTSD therapy that better matches their pretreatment psychological profile might facilitate a better therapeutic response.


Subject(s)
Cognitive Behavioral Therapy , Implosive Therapy , Stress Disorders, Post-Traumatic , Veterans , Humans , Veterans/psychology , Stress Disorders, Post-Traumatic/therapy , Stress Disorders, Post-Traumatic/psychology , Treatment Outcome
5.
Front Neurol ; 14: 1276437, 2023.
Article in English | MEDLINE | ID: mdl-38156092

ABSTRACT

Introduction: The relation between traumatic brain injury (TBI), its acute and chronic symptoms, and the potential for remote neurodegenerative disease is a priority for military research. Structural and functional connectivity (FC) of the basal ganglia, involved in motor tasks such as walking, are altered in some samples of Service Members and Veterans with TBI, but any behavioral implications are unclear and could further depend on the context in which the TBI occurred. Methods: In this study, FC from caudate and pallidum seeds was measured in Service Members and Veterans with a history of mild TBI that occurred during combat deployment, Service Members and Veterans whose mild TBI occurred outside of deployment, and Service Members and Veterans who had no lifetime history of TBI. Results: FC patterns differed for the two contextual types of mild TBI. Service Members and Veterans with deployment-related mild TBI demonstrated increased FC between the right caudate and lateral occipital regions relative to both the non-deployment mild TBI and TBI-negative groups. When evaluating the association between FC from the caudate and gait, the non-deployment mild TBI group showed a significant positive relationship between walking time and FC with the frontal pole, implicated in navigational planning, whereas the deployment-related mild TBI group trended towards a greater negative association between walking time and FC within the occipital lobes, associated with visuo-spatial processing during navigation. Discussion: These findings have implications for elucidating subtle motor disruption in Service Members and Veterans with deployment-related mild TBI. Possible implications for future walking performance are discussed.

6.
JAMA Netw Open ; 6(11): e2343410, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37966838

ABSTRACT

Importance: Traumatic brain injury (TBI) is known to cause widespread neural disruption in the cerebrum. However, less is known about the association of TBI with cerebellar structure and how such changes may alter executive functioning. Objective: To investigate alterations in subregional cerebellum volume and cerebral white matter microstructure after pediatric TBI and examine subsequent changes in executive function. Design, Setting, and Participants: This retrospective cohort study combined 12 data sets (collected between 2006 and 2020) from 9 sites in the Enhancing Neuroimaging Genetics Through Meta-Analysis Consortium Pediatric TBI working group in a mega-analysis of cerebellar structure. Participants with TBI or healthy controls (some with orthopedic injury) were recruited from trauma centers, clinics, and institutional trauma registries, some of which were followed longitudinally over a period of 0.7 to 1.9 years. Healthy controls were recruited from the surrounding community. Data analysis occurred from October to December 2022. Exposure: Accidental mild complicated-severe TBI (msTBI) for those in the TBI group. Some controls received a diagnosis of orthopedic injury. Main Outcomes and Measures: Volume of 18 cerebellar lobules and vermal regions were estimated from 3-dimensional T1-weighted magnetic resonance imaging (MRI) scans. White matter organization in 28 regions of interest was assessed with diffusion tensor MRI. Executive function was measured by parent-reported scores from the Behavior Rating Inventory of Executive Functioning. Results: A total of 598 children and adolescents (mean [SD] age, 14.05 [3.06] years; range, 5.45-19.70 years; 386 male participants [64.5%]; 212 female participants [35.5%]) were included in the study, with 314 participants in the msTBI group, and 284 participants in the non-TBI group (133 healthy individuals and 151 orthopedically injured individuals). Significantly smaller total cerebellum volume (d = -0.37; 95% CI, -0.52 to -0.22; P < .001) and subregional cerebellum volumes (eg, corpus medullare; d = -0.43; 95% CI, -0.58 to -0.28; P < .001) were observed in the msTBI group. These alterations were primarily seen in participants in the chronic phase (ie, >6 months postinjury) of injury (total cerebellar volume, d = -0.55; 95% CI, -0.75 to -0.35; P < .001). Smaller cerebellum volumes were associated with higher scores on the Behavior Rating Inventory of Executive Functioning Global Executive Composite score (ß = -208.9 mm3; 95% CI, -319.0 to -98.0 mm3; P = .008) and Metacognition Index score (ß = -202.5 mm3; 95% CI, -319.0 to -85.0 mm3; P = .02). In a subset of 185 participants with longitudinal data, younger msTBI participants exhibited cerebellum volume reductions (ß = 0.0052 mm3; 95% CI, 0.0013 to 0.0090 mm3; P = .01), and older participants slower growth rates. Poorer white matter organization in the first months postinjury was associated with decreases in cerebellum volume over time (ß=0.52 mm3; 95% CI, 0.19 to 0.84 mm3; P = .005). Conclusions and Relevance: In this cohort study of pediatric msTBI, our results demonstrated robust cerebellar volume alterations associated with pediatric TBI, localized to the posterior lobe. Furthermore, longitudinal cerebellum changes were associated with baseline diffusion tensor MRI metrics, suggesting secondary cerebellar atrophy. These results provide further understanding of secondary injury mechanisms and may point to new opportunities for intervention.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Adolescent , Humans , Child , Female , Male , Cohort Studies , Retrospective Studies , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Cerebellum/diagnostic imaging , Atrophy
7.
Mil Med ; 188(Suppl 6): 124-133, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37948207

ABSTRACT

INTRODUCTION: Because chronic difficulties with cognition and well-being are common after mild traumatic brain injury (mTBI) and aerobic physical activity and exercise (PAE) is a potential treatment and mitigation strategy, we sought to determine their relationship in a large sample with remote mTBI. MATERIALS AND METHODS: The Long-Term Impact of Military-Relevant Brain Injury Consortium-Chronic Effects of Neurotrauma Consortium prospective longitudinal study is a national multicenter observational study of combat-exposed service members and veterans. Study participants with positive mTBI histories (n = 1,087) were classified as "inactive" (23%), "insufficiently active" (46%), "active" (19%), or "highly active" (13%) based on the aerobic PAE level. The design was a cross-sectional analysis with multivariable regression. PAE was reported on the Behavioral Risk Factor Surveillance System. Preselected primary outcomes were seven well-validated cognitive performance tests of executive function, learning, and memory: The California Verbal Learning Test-Second Edition Long-Delay Free Recall and Total Recall, Brief Visuospatial Memory Test-Revised Total Recall, Trail-Making Test-Part B, and NIH Toolbox for the Assessment of Neurological Behavior and Function Cognition Battery Picture Sequence Memory, Flanker, and Dimensional Change Card Sort tests. Preselected secondary outcomes were standardized self-report questionnaires of cognitive functioning, life satisfaction, and well-being. RESULTS: Across the aerobic activity groups, cognitive performance tests were not significantly different. Life satisfaction and overall health status scores were higher for those engaging in regular aerobic activity. Exploratory analyses also showed better working memory and verbal fluency with higher aerobic activity levels. CONCLUSIONS: An association between the aerobic activity level and the preselected primary cognitive performance outcome was not demonstrated using this study sample and methods. However, higher aerobic activity levels were associated with better subjective well-being. This supports a clinical recommendation for regular aerobic exercise among persons with chronic or remote mTBI. Future longitudinal analyses of the exercise-cognition relationship in chronic mTBI populations are recommended.


Subject(s)
Brain Concussion , Veterans , Humans , Brain Concussion/epidemiology , Cross-Sectional Studies , Prospective Studies , Longitudinal Studies , Neuropsychological Tests , Cognition , Veterans/psychology
8.
Neuropsychology ; 37(4): 398-408, 2023 May.
Article in English | MEDLINE | ID: mdl-35797175

ABSTRACT

OBJECTIVE: The variety of instruments used to assess posttraumatic stress disorder (PTSD) allows for flexibility, but also creates challenges for data synthesis. The objective of this work was to use a multisite mega analysis to derive quantitative recommendations for equating scores across measures of PTSD severity. METHOD: Empirical Bayes harmonization and linear models were used to describe and mitigate site and covariate effects. Quadratic models for converting scores across PTSD assessments were constructed using bootstrapping and tested on hold out data. RESULTS: We aggregated 17 data sources and compiled an n = 5,634 sample of individuals who were assessed for PTSD symptoms. We confirmed our hypothesis that harmonization and covariate adjustments would significantly improve inference of scores across instruments. Harmonization significantly reduced cross-dataset variance (28%, p < .001), and models for converting scores across instruments were well fit (median R² = 0.985) with an average root mean squared error of 1.46 on sum scores. CONCLUSIONS: These methods allow PTSD symptom severity to be placed on multiple scales and offers interesting empirical perspectives on the role of harmonization in the behavioral sciences. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Stress Disorders, Post-Traumatic , Veterans , Humans , Stress Disorders, Post-Traumatic/diagnosis , Bayes Theorem , Severity of Illness Index
9.
Hum Brain Mapp ; 44(5): 1888-1900, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36583562

ABSTRACT

Traumatic brain injury (TBI) in military populations can cause disruptions in brain structure and function, along with cognitive and psychological dysfunction. Diffusion magnetic resonance imaging (dMRI) can detect alterations in white matter (WM) microstructure, but few studies have examined brain asymmetry. Examining asymmetry in large samples may increase sensitivity to detect heterogeneous areas of WM alteration in mild TBI. Through the Enhancing Neuroimaging Genetics Through Meta-Analysis Military-Relevant Brain Injury working group, we conducted a mega-analysis of neuroimaging and clinical data from 16 cohorts of Active Duty Service Members and Veterans (n = 2598). dMRI data were processed together along with harmonized demographic, injury, psychiatric, and cognitive measures. Fractional anisotropy in the cingulum showed greater asymmetry in individuals with deployment-related TBI, driven by greater left lateralization in TBI. Results remained significant after accounting for potentially confounding variables including posttraumatic stress disorder, depression, and handedness, and were driven primarily by individuals whose worst TBI occurred before age 40. Alterations in the cingulum were also associated with slower processing speed and poorer set shifting. The results indicate an enhancement of the natural left laterality of the cingulum, possibly due to vulnerability of the nondominant hemisphere or compensatory mechanisms in the dominant hemisphere. The cingulum is one of the last WM tracts to mature, reaching peak FA around 42 years old. This effect was primarily detected in individuals whose worst injury occurred before age 40, suggesting that the protracted development of the cingulum may lead to increased vulnerability to insults, such as TBI.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , White Matter , Humans , Adult , White Matter/pathology , Neuropsychological Tests , Brain Injuries/pathology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/pathology , Brain
10.
Brain Res ; 1796: 148099, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36162495

ABSTRACT

Mild traumatic brain injury (mTBI) and posttraumatic stress disorder (PTSD) are prevalent among military populations, and both have been associated with working memory (WM) impairments. Previous resting-state functional connectivity (rsFC) research conducted separately in PTSD and mTBI populations suggests that there may be similar and distinct abnormalities in WM-related networks. However, no studies have compared rsFC of WM brain regions in participants with mTBI versus PTSD. We used resting-state fMRI to investigate rsFC of WM networks in U.S. Service Members (n = 127; ages 18-59) with mTBI only (n = 46), PTSD only (n = 24), and an orthopedically injured (OI) control group (n = 57). We conducted voxelwise rsFC analyses with WM brain regions to test for differences in WM network connectivity in mTBI versus PTSD. Results revealed reduced rsFC between ventrolateral prefrontal cortex (vlPFC), lateral premotor cortex, and dorsolateral prefrontal cortex (dlPFC) WM regions and brain regions in the dorsal attention and somatomotor networks in both mTBI and PTSD groups versus controls. When compared to those with mTBI, individuals with PTSD had lower rsFC between both the lateral premotor WM seed region and middle occipital gyrus as well as between the dlPFC WM seed region and paracentral lobule. Interestingly, only vlPFC connectivity was significantly associated with WM performance across the samples. In conclusion, we found primarily overlapping patterns of reduced rsFC in WM brain regions in both mTBI and PTSD groups. Our finding of decreased vlPFC connectivity associated with WM is consistent with previous clinical and neuroimaging studies. Overall, these results provide support for shared neural substrates of WM in individuals with either mTBI or PTSD.


Subject(s)
Brain Concussion , Stress Disorders, Post-Traumatic , Adolescent , Adult , Brain/diagnostic imaging , Brain Concussion/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Memory, Short-Term , Middle Aged , Stress Disorders, Post-Traumatic/diagnostic imaging , Young Adult
11.
Hum Brain Mapp ; 43(8): 2653-2667, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35289463

ABSTRACT

Mild Traumatic brain injury (mTBI) is a signature wound in military personnel, and repetitive mTBI has been linked to age-related neurogenerative disorders that affect white matter (WM) in the brain. However, findings of injury to specific WM tracts have been variable and inconsistent. This may be due to the heterogeneity of mechanisms, etiology, and comorbid disorders related to mTBI. Non-negative matrix factorization (NMF) is a data-driven approach that detects covarying patterns (components) within high-dimensional data. We applied NMF to diffusion imaging data from military Veterans with and without a self-reported TBI history. NMF identified 12 independent components derived from fractional anisotropy (FA) in a large dataset (n = 1,475) gathered through the ENIGMA (Enhancing Neuroimaging Genetics through Meta-Analysis) Military Brain Injury working group. Regressions were used to examine TBI- and mTBI-related associations in NMF-derived components while adjusting for age, sex, post-traumatic stress disorder, depression, and data acquisition site/scanner. We found significantly stronger age-dependent effects of lower FA in Veterans with TBI than Veterans without in four components (q < 0.05), which are spatially unconstrained by traditionally defined WM tracts. One component, occupying the most peripheral location, exhibited significantly stronger age-dependent differences in Veterans with mTBI. We found NMF to be powerful and effective in detecting covarying patterns of FA associated with mTBI by applying standard parametric regression modeling. Our results highlight patterns of WM alteration that are differentially affected by TBI and mTBI in younger compared to older military Veterans.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Brain Injuries , Military Personnel , Stress Disorders, Post-Traumatic , Veterans , White Matter , Brain/diagnostic imaging , Brain Concussion/diagnostic imaging , Brain Injuries/etiology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Humans , Multivariate Analysis , Stress Disorders, Post-Traumatic/complications , White Matter/diagnostic imaging
12.
Brain Inj ; 36(5): 662-672, 2022 04 16.
Article in English | MEDLINE | ID: mdl-35125044

ABSTRACT

OBJECTIVE: To determine if history of mild traumatic brain injury (mTBI) is associated with advanced or accelerated brain aging among the United States (US) military Service Members and Veterans. METHODS: Eight hundred and twenty-two participants (mean age = 40.4 years, 714 male/108 female) underwent MRI sessions at eight sites across the US. Two hundred and one participants completed a follow-up scan between five months and four years later. Predicted brain ages were calculated using T1-weighted MRIs and then compared with chronological ages to generate an Age Deviation Score for cross-sectional analyses and an Interval Deviation Score for longitudinal analyses. Participants also completed a neuropsychological battery, including measures of both cognitive functioning and psychological health. RESULT: In cross-sectional analyses, males with a history of deployment-related mTBI showed advanced brain age compared to those without (t(884) = 2.1, p = .038), while this association was not significant in females. In follow-up analyses of the male participants, severity of posttraumatic stress disorder (PTSD), depression symptoms, and alcohol misuse were also associated with advanced brain age. CONCLUSION: History of deployment-related mTBI, severity of PTSD and depression symptoms, and alcohol misuse are associated with advanced brain aging in male US military Service Members and Veterans.


Subject(s)
Alcoholism , Brain Concussion , Brain Injuries, Traumatic , Military Personnel , Stress Disorders, Post-Traumatic , Veterans , Adult , Brain , Brain Concussion/psychology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Cross-Sectional Studies , Female , Humans , Male , Military Personnel/psychology , Neuroimaging , Stress Disorders, Post-Traumatic/diagnostic imaging , Stress Disorders, Post-Traumatic/etiology , United States , Veterans/psychology
13.
Brain ; 144(7): 1994-2008, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34312662

ABSTRACT

Clinical practice guidelines support cognitive rehabilitation for people with a history of mild traumatic brain injury (mTBI) and cognitive impairment, but no class I randomized clinical trials have evaluated the efficacy of self-administered computerized cognitive training. The goal of this study was to evaluate the efficacy of a self-administered computerized plasticity-based cognitive training programmes in primarily military/veteran participants with a history of mTBI and cognitive impairment. A multisite randomized double-blind clinical trial of a behavioural intervention with an active control was conducted from September 2013 to February 2017 including assessments at baseline, post-training, and after a 3-month follow-up period. Participants self-administered cognitive training (experimental and active control) programmes at home, remotely supervised by a healthcare coach, with an intended training schedule of 5 days per week, 1 h per day, for 13 weeks. Participants (149 contacted, 83 intent-to-treat) were confirmed to have a history of mTBI (mean of 7.2 years post-injury) through medical history/clinician interview and persistent cognitive impairment through neuropsychological testing and/or quantitative participant reported measure. The experimental intervention was a brain plasticity-based computerized cognitive training programme targeting speed/accuracy of information processing, and the active control was composed of computer games. The primary cognitive function measure was a composite of nine standardized neuropsychological assessments, and the primary directly observed functional measure a timed instrumental activities of daily living assessment. Secondary outcome measures included participant-reported assessments of cognitive and mental health. The treatment group showed an improvement in the composite cognitive measure significantly larger than that of the active control group at both the post-training [+6.9 points, confidence interval (CI) +1.0 to +12.7, P = 0.025, d = 0.555] and the follow-up visit (+7.4 points, CI +0.6 to +14.3, P = 0.039, d = 0.591). Both large and small cognitive function improvements were seen twice as frequently in the treatment group than in the active control group. No significant between-group effects were seen on other measures, including the directly-observed functional and symptom measures. Statistically equivalent improvements in both groups were seen in depressive and cognitive symptoms.


Subject(s)
Brain Concussion/rehabilitation , Cognition , Neuronal Plasticity , Adult , Double-Blind Method , Female , Humans , Male , Software
14.
Neurology ; 2021 May 28.
Article in English | MEDLINE | ID: mdl-34050006

ABSTRACT

OBJECTIVE: Our study addressed aims: (1) test the hypothesis that moderate-severe TBI in pediatric patients is associated with widespread white matter (WM) disruption; (2) test the hypothesis that age and sex impact WM organization after injury; and (3) examine associations between WM organization and neurobehavioral outcomes. METHODS: Data from ten previously enrolled, existing cohorts recruited from local hospitals and clinics were shared with the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Pediatric msTBI working group. We conducted a coordinated analysis of diffusion MRI (dMRI) data using the ENIGMA dMRI processing pipeline. RESULTS: Five hundred and seven children and adolescents (244 with complicated mild to severe TBI [msTBI] and 263 controls) were included. Patients were clustered into three post-injury intervals: acute/subacute - <2 months, post-acute - 2-6 months, chronic - 6+ months. Outcomes were dMRI metrics and post-injury behavioral problems as indexed by the Child Behavior Checklist (CBCL). Our analyses revealed altered WM diffusion metrics across multiple tracts and all post-injury intervals (effect sizes ranging between d=-0.5 to -1.3). Injury severity is a significant contributor to the extent of WM alterations but explained less variance in dMRI measures with increasing time post-injury. We observed a sex-by-group interaction: females with TBI had significantly lower fractional anisotropy in the uncinate fasciculus than controls (𝞫=0.043), which coincided with more parent-reported behavioral problems (𝞫=-0.0027). CONCLUSIONS: WM disruption after msTBI is widespread, persistent, and influenced by demographic and clinical variables. Future work will test techniques for harmonizing neurocognitive data, enabling more advanced analyses to identify symptom clusters and clinically-meaningful patient subtypes.

15.
Brain Imaging Behav ; 15(5): 2616-2626, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33759113

ABSTRACT

Mild traumatic brain injury (mTBI) is highly prevalent in military populations, with many service members suffering from long-term symptoms. Posttraumatic stress disorder (PTSD) often co-occurs with mTBI and predicts worse clinical outcomes. Functional neuroimaging research suggests there are both overlapping and distinct patterns of resting-state functional connectivity (rsFC) in mTBI versus PTSD. However, few studies have directly compared rsFC of cortical networks in military service members with these two conditions. In the present study, U.S. service members (n = 137; ages 19-59; 120 male) underwent resting-state fMRI scans. Participants were divided into three study groups: mTBI only, PTSD only, and orthopedically injured (OI) controls. Analyses investigated group differences in rsFC for cortical networks: default mode (DMN), frontoparietal (FPN), salience, somatosensory, motor, auditory, and visual. Analyses were family-wise error (FWE) cluster-corrected and Bonferroni-corrected for number of network seeds regions at the whole brain level (pFWE < 0.002). Both mTBI and PTSD groups had reduced rsFC for DMN and FPN regions compared with OI controls. These group differences were largely driven by diminished connectivity in the PTSD group. rsFC with the middle frontal gyrus of the FPN was increased in mTBI, but decreased in PTSD. Overall, these results suggest that PTSD symptoms may have a more consistent signal than mTBI. Our novel findings of opposite patterns of connectivity with lateral prefrontal cortex highlight a potential biomarker that could be used to differentiate between these conditions.


Subject(s)
Brain Concussion , Stress Disorders, Post-Traumatic , Adult , Brain/diagnostic imaging , Brain Concussion/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Prefrontal Cortex , Stress Disorders, Post-Traumatic/diagnostic imaging , Young Adult
16.
Brain Imaging Behav ; 15(2): 585-613, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33409819

ABSTRACT

Traumatic brain injury (TBI) is common among military personnel and the civilian population and is often followed by a heterogeneous array of clinical, cognitive, behavioral, mood, and neuroimaging changes. Unlike many neurological disorders that have a characteristic abnormal central neurologic area(s) of abnormality pathognomonic to the disorder, a sufficient head impact may cause focal, multifocal, diffuse or combination of injury to the brain. This inconsistent presentation makes it difficult to establish or validate biological and imaging markers that could help improve diagnostic and prognostic accuracy in this patient population. The purpose of this manuscript is to describe both the challenges and opportunities when conducting military-relevant TBI research and introduce the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Military Brain Injury working group. ENIGMA is a worldwide consortium focused on improving replicability and analytical power through data sharing and collaboration. In this paper, we discuss challenges affecting efforts to aggregate data in this patient group. In addition, we highlight how "big data" approaches might be used to understand better the role that each of these variables might play in the imaging and functional phenotypes of TBI in Service member and Veteran populations, and how data may be used to examine important military specific issues such as return to duty, the late effects of combat-related injury, and alteration of the natural aging processes.


Subject(s)
Brain Injuries, Traumatic , Military Personnel , Stress Disorders, Post-Traumatic , Veterans , Brain Injuries, Traumatic/diagnostic imaging , Humans , Magnetic Resonance Imaging
17.
Brain Imaging Behav ; 15(2): 576-584, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32720179

ABSTRACT

Sport-related brain injury is very common, and the potential long-term effects include a wide range of neurological and psychiatric symptoms, and potentially neurodegeneration. Around the globe, researchers are conducting neuroimaging studies on primarily homogenous samples of athletes. However, neuroimaging studies are expensive and time consuming, and thus current findings from studies of sport-related brain injury are often limited by small sample sizes. Further, current studies apply a variety of neuroimaging techniques and analysis tools which limit comparability among studies. The ENIGMA Sports Injury working group aims to provide a platform for data sharing and collaborative data analysis thereby leveraging existing data and expertise. By harmonizing data from a large number of studies from around the globe, we will work towards reproducibility of previously published findings and towards addressing important research questions with regard to diagnosis, prognosis, and efficacy of treatment for sport-related brain injury. Moreover, the ENIGMA Sports Injury working group is committed to providing recommendations for future prospective data acquisition to enhance data quality and scientific rigor.


Subject(s)
Athletic Injuries , Brain Concussion , Brain Injuries , Athletic Injuries/diagnostic imaging , Brain Concussion/diagnostic imaging , Brain Concussion/epidemiology , Brain Concussion/etiology , Humans , Magnetic Resonance Imaging , Reproducibility of Results
18.
Brain Imaging Behav ; 15(2): 555-575, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32734437

ABSTRACT

Traumatic brain injury (TBI) is a major cause of death and disability in children in both developed and developing nations. Children and adolescents suffer from TBI at a higher rate than the general population, and specific developmental issues require a unique context since findings from adult research do not necessarily directly translate to children. Findings in pediatric cohorts tend to lag behind those in adult samples. This may be due, in part, both to the smaller number of investigators engaged in research with this population and may also be related to changes in safety laws and clinical practice that have altered length of hospital stays, treatment, and access to this population. The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Pediatric Moderate/Severe TBI (msTBI) group aims to advance research in this area through global collaborative meta-analysis of neuroimaging data. In this paper, we discuss important challenges in pediatric TBI research and opportunities that we believe the ENIGMA Pediatric msTBI group can provide to address them. With the paucity of research studies examining neuroimaging biomarkers in pediatric patients with TBI and the challenges of recruiting large numbers of participants, collaborating to improve statistical power and to address technical challenges like lesions will significantly advance the field. We conclude with recommendations for future research in this field of study.


Subject(s)
Brain Injuries, Traumatic , Magnetic Resonance Imaging , Adolescent , Adult , Biomarkers , Brain Injuries, Traumatic/diagnostic imaging , Child , Humans , Neuroimaging
19.
Brain Imaging Behav ; 14(5): 1318-1327, 2020 Oct.
Article in English | MEDLINE | ID: mdl-30511116

ABSTRACT

Automated neuroimaging methods like FreeSurfer ( https://surfer.nmr.mgh.harvard.edu/ ) have revolutionized quantitative neuroimaging analyses. Such analyses provide a variety of metrics used for image quantification, including magnetic resonance imaging (MRI) volumetrics. With the release of FreeSurfer version 6.0, it is important to assess its comparability to the widely-used previous version 5.3. The current study used data from the initial 249 participants in the ongoing Chronic Effects of Neurotrauma Consortium (CENC) multicenter observational study to compare the volumetric output of versions 5.3 and 6.0 across various regions of interest (ROI). In the current investigation, the following ROIs were examined: total intracranial volume, total white matter volume, total ventricular volume, total gray matter volume, and right and left volumes for the thalamus, pallidum, putamen, caudate, amygdala and hippocampus. Absolute ROI volumes derived from FreeSurfer 6.0 differed significantly from those obtained using version 5.3. We also employed a clinically-based evaluation strategy to compare both versions in their prediction of age-mediated volume reductions (or ventricular increase) in the aforementioned structures. Statistical comparison involved both general linear modeling (GLM) and random forest (RF) methods, where cross-validation error was significantly higher using segmentations from FreeSurfer version 5.3 versus version 6.0 (GLM: t = 4.97, df = 99, p value = 2.706e-06; RF: t = 4.85, df = 99, p value = 4.424e-06). Additionally, the relative importance of ROIs used to predict age using RFs differed between FreeSurfer versions, indicating substantial differences in the two versions. However, from the perspective of correlational analyses, fitted regression lines and their slopes were similar between the two versions, regardless of version used. While absolute volumes are not interchangeable between version 5.3 and 6.0, ROI correlational analyses appear to yield similar results, suggesting the interchangeability of ROI volume for correlational studies.


Subject(s)
Magnetic Resonance Imaging , White Matter , Brain/diagnostic imaging , Gray Matter/diagnostic imaging , Hippocampus , Humans , Image Processing, Computer-Assisted , Neuroimaging , White Matter/diagnostic imaging
20.
Brain Imaging Behav ; 14(3): 772-786, 2020 Jun.
Article in English | MEDLINE | ID: mdl-30565025

ABSTRACT

Microstructural neuropathology occurs in the corpus callosum (CC) after repetitive sports concussion in boxers and can be dose-dependent. However, the specificity and relation of CC changes to boxing exposure extent and post-career psychiatric and neuropsychological outcomes are largely unknown. Using deterministic diffusion tensor imaging (DTI) techniques, boxers and demographically-matched, noncontact sport athletes were compared to address literature gaps. Ten boxers and 9 comparison athletes between 26 and 59 years old (M = 44.63, SD = 9.24) completed neuropsychological testing and MRI. Quantitative DTI metrics were estimated for CC subregions. Group×Region interaction effects were observed on fractional anisotropy (FA; η2p ≥ .21). Follow-up indicated large effects of group (η2p ≥ .26) on splenium FA (boxerscomparisons), but not radial diffusivity (RD). The group of boxers had moderately elevated number of psychiatric symptoms and reduced neuropsychological scores relative to the comparison group. In boxers, years sparring, professional bouts, and knockout history correlated strongly (r > |.40|) with DTI metrics and fine motor dexterity. In the comparison group, splenium FA correlated positively with psychiatric symptoms. In the boxer group, neuropsychological scores correlated with DTI metrics in all CC subregions. Results suggested relative vulnerability of the splenium and, to a lesser extent, the genu to chronic, repetitive head injury from boxing. Dose-dependent associations of professional boxing history extent with DTI white matter structure indices as well as fine motor dexterity were supported. Results indicated that symptoms of depression and executive dysfunction may provide the strongest indicators of global CC disruption from boxing.


Subject(s)
White Matter , Adult , Anisotropy , Brain/diagnostic imaging , Corpus Callosum/diagnostic imaging , Diffusion Tensor Imaging , Humans , Magnetic Resonance Imaging , Middle Aged , White Matter/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...